**Markov decision processes (MDPs)**, named after Andrey Markov, provide a mathematical framework for modeling decision making in situations where outcomes are partlyrandom and partly under the control of a decision maker. MDPs are useful for studying a wide range of optimization problems solved via dynamic programming andreinforcement learning. MDPs were known at least as early as the 1950s (cf. Bellman 1957). A core body of research on Markov decision processes resulted from Ronald A. Howard‘s book published in 1960, *Dynamic Programming and Markov Processes*. They are used in a wide area of disciplines, including robotics, automated control, economics, and manufacturing.

More precisely, a Markov Decision Process is a discrete time stochastic control process. At each time step, the process is in some state , and the decision maker may choose any action that is available in state . The process responds at the next time step by randomly moving into a new state , and giving the decision maker a corresponding reward .

The probability that the process moves into its new state is influenced by the chosen action. Specifically, it is given by the state transition function . Thus, the next state depends on the current state and the decision maker’s action . But given and , it is conditionally independent of all previous states and actions; in other words, the state transitions of an MDP possess satisfies the *Markov property*.

Markov decision processes are an extension of Markov chains; the difference is the addition of actions (allowing choice) and rewards (giving motivation). Conversely, if only one action exists for each state and all rewards are the same (e.g., zero), a Markov decision process reduces to a Markov chain.

A Markov decision process is a 5-tuple , where

- is a finite set of states,
- is a finite set of actions (alternatively, is the finite set of actions available from state ),
- is the probability that action in state at time will lead to state at time ,
- is the immediate reward (or expected immediate reward) received after transition to state from state ,
- is the discount factor, which represents the difference in importance between future rewards and present rewards.

The core problem of MDPs is to find a “policy” for the decision maker: a function that specifies the action that the decision maker will choose when in state . Note that once a Markov decision process is combined with a policy in this way, this fixes the action for each state and the resulting combination behaves like a Markov chain.

The goal is to choose a policy that will maximize some cumulative function of the random rewards, typically the expected discounted sum over a potentially infinite horizon:

- (where we choose )

where is the discount factor and satisfies . (For example, when the discount rate is r.) is typically close to 1.

Because of the Markov property, the optimal policy for this particular problem can indeed be written as a function of only, as assumed above.