A tachyon /ˈtæki.ɒn/ or tachyonic particle is a hypothetical particle that always moves faster than light. The word comes from theGreek: ταχύ pronounced tachy /ˈtɑːxi/, meaning rapid. It was coined in 1967 by Gerald Feinberg.[1] The complementary particle types are called luxon (always moving at the speed of light) and bradyon (always moving slower than light), which both exist. The possibility of particles moving faster than light was first proposed by O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan in 1962, although the term they used for it was “meta-particle”.[2]

Most physicists think that faster-than-light particles cannot exist because they are not consistent with the known laws of physics.[3][4] If such particles did exist, they could be used to build a tachyonic antitelephone and send signals faster than light, which (according tospecial relativity) would lead to violations of causality.[4] Potentially consistent theories that allow faster-than-light particles include those that break Lorentz invariance, the symmetry underlying special relativity, so that the speed of light is not a barrier.

In the 1967 paper that coined the term,[1] Feinberg proposed that tachyonic particles could be quanta of a quantum field with negative squared mass. However, it was soon realized that excitations of such imaginary mass fields do not in fact propagate faster than light,[5] and instead represent an instability known as tachyon condensation.[3] Nevertheless, negative squared mass fields are commonly referred to as “tachyons”,[6] and in fact have come to play an important role in modern physics.

Despite theoretical arguments against the existence of faster-than-light particles, experiments have been conducted to search for them. No compelling evidence for their existence has been found. In September 2011, it was reported that a tau neutrino had travelled faster than the speed of light in a major release by CERN; however, later updates from CERN on the OPERA project indicate that the faster-than-light readings were resultant from “a faulty element of the experiment’s fibre optic timing system”.[7]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s