Ocean Climate

Ocean acidification is the ongoing decrease in the pH of the Earth‘s oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere.[2] Seawater is slightly basic (meaning pH > 7), and the process in question is a shift towards pH-neutral conditions rather than a transition to acidic conditions (pH < 7).[3] Ocean alkalinity is not changed by the process, or may increase over long time periods due to carbonate dissolution.[4] An estimated 30–40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers and lakes.[5][6] To achieve chemical equilibrium, some of it reacts with the water to form carbonic acid. Some of these extra carbonic acid molecules react with a water molecule to give a bicarbonate ion and a hydronium ion, thus increasing ocean acidity (H+ ion concentration). Between 1751 and 1994 surface ocean pH is estimated to have decreased from approximately 8.25 to 8.14,[7] representing an increase of almost 30% in H+ion concentration in the world’s oceans.[8][9] Earth System Models project that within the last decade ocean acidity exceeded historical analogs[10] and in combination with other ocean biogeochemical changes could undermine the functioning of marine ecosystems and disrupt the provision of many goods and services associated with the ocean.[11]

Increasing acidity is thought to have a range of potentially harmful consequences for marine organisms, such as depressing metabolic rates and immune responses in some organisms, and causing coral bleaching.[citation needed] By increasing the presence of free hydrogen ions, each molecule of carbonic acid that forms in the oceans ultimately results in the conversion of two carbonate ions into bicarbonate ions. This net decrease in the amount of carbonate ions available makes it more difficult for marine calcifying organisms, such as coral and some plankton, to form biogenic calcium carbonate, and such structures become vulnerable to dissolution.[12] Ongoing acidification of the oceans threatens food chains connected with the oceans.[13][14] As members of theInterAcademy Panel, 105 science academies have issued a statement on ocean acidification recommending that by 2050, global CO2emissions be reduced by at least 50% compared to the 1990 level.[15]

While ongoing ocean acidification is anthropogenic in origin, it has occurred previously in Earth’s history.[16] The most notable example is the Paleocene-Eocene Thermal Maximum (PETM),[17] which occurred approximately 56 million years ago. For reasons that are currently uncertain, massive amounts of carbon entered the ocean and atmosphere, and led to the dissolution of carbonate sediments in all ocean basins.

Ocean acidification has been called the “evil twin of global warming[18][19][20][21][22] and “the other CO2 problem”.[19][21][23]


by DONALD PROTHERO on Dec 19 2012

Climate deniers try to distort or obfuscate the evidence about the changing atmosphere, and it’s not always easy to give overwhelmingly conclusive data that would convince them. In some cases the data are tricky to analyze, or do not have well-documented long-term histories necessary to answer every concern about whether recent weather events are truly unprecedented. The atmospheric system is very complicated, with many different processes operating on short-term, medium-term, and long-term time scales, and not all of it is as well understood as we would like. Thus, the arguments over changes in earth’s atmosphere often reach an impasse.

Not so for the oceans. Although oceans are an even larger system than the atmosphere, we understand them much better. More importantly, we have an excellent long-term record of how the oceans have changed over millions of years from thousands of deep-sea cores, and from the paleontological record of marine fossils that goes back over 700 million years. And unlike the atmospheres, oceans change very slowly over time, since the thermal inertia of water makes the seas very resistant to change except on long-term time scales. In addition, most ocean currents move slowly compared to atmospheric currents. So no matter what you want to make of the data showing atmospheric change, the changes in the oceans are more alarming, since oceans require immense stimuli to cause such change.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s