dietary recommendations shaped by the sugar industry

Special Communication |

Sugar Industry and Coronary Heart Disease Research

A Historical Analysis of Internal Industry Documents FREEONLINE FIRST

Cristin E. Kearns, DDS, MBA1,2; Laura A. Schmidt, PhD, MSW, MPH1,3,4; Stanton A. Glantz, PhD1,5,6,7,8
JAMA Intern Med. Published online September 12, 2016. doi:10.1001/jamainternmed.2016.5394
Text Size

In the 1950s, disproportionately high rates of coronary heart disease (CHD) mortality in American men led to studies of the role of dietary factors, including cholesterol, phytosterols, excessive calories, amino acids, fats, carbohydrates, vitamins, and minerals in influencing CHD risk.1 By the 1960s, 2 prominent physiologists were championing divergent causal hypotheses of CHD2,3: John Yudkin identified added sugars as the primary agent, while Ancel Keys identified total fat, saturated fat, and dietary cholesterol. However, by the 1980s, few scientists believed that added sugars played a significant role in CHD, and the first 1980 Dietary Guidelines for Americans4 focused on reducing total fat, saturated fat, and dietary cholesterol for CHD prevention.

Although the contribution of dietary sugars to CHD is still debated, what is clear is that the sugar industry, led by the Sugar Association, the sucrose industry’s Washington, DC–based trade association,5 steadfastly denies that there is a relationship between added sugar consumption and CVD risk.6,7 This Special Communication uses internal sugar industry documents to describe how the industry sought to influence the scientific debate over the dietary causes of CHD in the 1950s and 1960s, a debate still reverberating in 2016.

Heat

Heat is energy transferred due to temperature differences only.

  1. Heat transfer can alter system states;
  2. Bodies don’t “contain” heat; heat is identified as it comes across system boundaries;
  3. The amount of heat needed to go from one state to another is path dependent;
  4. Adiabatic processes are ones in which no heat is transferred.

The overall heat loss from a building can be calculated as

H = Ht + Hv + Hi (1)

where

H = overall heat loss(W)

Ht = heat loss due to transmission through walls, windows, doors, floors and more(W)

Hv = heat loss caused by ventilation(W)

Hi = heat loss caused by infiltration(W)

Insulation Thickness, Thermal Conductivity & Performance Criteria

Insulation – Terms, Definitions & Formula

fairies don’t exist

Existence

First published Wed Oct 10, 2012

Existence raises deep and important problems in metaphysics, philosophy of language, and philosophical logic. Many of the issues can be organized around the following two questions: Is existence a property of individuals? and Assuming that existence is a property of individuals, are there individuals that lack it?

Bertrand Russell expressed one aspect of the problem this way: If it’s false that the present King of France is bald, then why doesn’t this fact imply that it’s true the present King of France is not bald?

Kant argues that the use of words (or “predicates”) alone does not necessarily imply the existence of their referents. We can only assume the existence of entities named by our words; we cannot prove “existence” by means of the use of language alone.

Ocean Climate

Ocean acidification is the ongoing decrease in the pH of the Earth‘s oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere.[2] Seawater is slightly basic (meaning pH > 7), and the process in question is a shift towards pH-neutral conditions rather than a transition to acidic conditions (pH < 7).[3] Ocean alkalinity is not changed by the process, or may increase over long time periods due to carbonate dissolution.[4] An estimated 30–40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers and lakes.[5][6] To achieve chemical equilibrium, some of it reacts with the water to form carbonic acid. Some of these extra carbonic acid molecules react with a water molecule to give a bicarbonate ion and a hydronium ion, thus increasing ocean acidity (H+ ion concentration). Between 1751 and 1994 surface ocean pH is estimated to have decreased from approximately 8.25 to 8.14,[7] representing an increase of almost 30% in H+ion concentration in the world’s oceans.[8][9] Earth System Models project that within the last decade ocean acidity exceeded historical analogs[10] and in combination with other ocean biogeochemical changes could undermine the functioning of marine ecosystems and disrupt the provision of many goods and services associated with the ocean.[11]

Increasing acidity is thought to have a range of potentially harmful consequences for marine organisms, such as depressing metabolic rates and immune responses in some organisms, and causing coral bleaching.[citation needed] By increasing the presence of free hydrogen ions, each molecule of carbonic acid that forms in the oceans ultimately results in the conversion of two carbonate ions into bicarbonate ions. This net decrease in the amount of carbonate ions available makes it more difficult for marine calcifying organisms, such as coral and some plankton, to form biogenic calcium carbonate, and such structures become vulnerable to dissolution.[12] Ongoing acidification of the oceans threatens food chains connected with the oceans.[13][14] As members of theInterAcademy Panel, 105 science academies have issued a statement on ocean acidification recommending that by 2050, global CO2emissions be reduced by at least 50% compared to the 1990 level.[15]

While ongoing ocean acidification is anthropogenic in origin, it has occurred previously in Earth’s history.[16] The most notable example is the Paleocene-Eocene Thermal Maximum (PETM),[17] which occurred approximately 56 million years ago. For reasons that are currently uncertain, massive amounts of carbon entered the ocean and atmosphere, and led to the dissolution of carbonate sediments in all ocean basins.

Ocean acidification has been called the “evil twin of global warming[18][19][20][21][22] and “the other CO2 problem”.[19][21][23]

SHIFTING BASELINES AND DYING OCEANS

by DONALD PROTHERO on Dec 19 2012

Climate deniers try to distort or obfuscate the evidence about the changing atmosphere, and it’s not always easy to give overwhelmingly conclusive data that would convince them. In some cases the data are tricky to analyze, or do not have well-documented long-term histories necessary to answer every concern about whether recent weather events are truly unprecedented. The atmospheric system is very complicated, with many different processes operating on short-term, medium-term, and long-term time scales, and not all of it is as well understood as we would like. Thus, the arguments over changes in earth’s atmosphere often reach an impasse.

Not so for the oceans. Although oceans are an even larger system than the atmosphere, we understand them much better. More importantly, we have an excellent long-term record of how the oceans have changed over millions of years from thousands of deep-sea cores, and from the paleontological record of marine fossils that goes back over 700 million years. And unlike the atmospheres, oceans change very slowly over time, since the thermal inertia of water makes the seas very resistant to change except on long-term time scales. In addition, most ocean currents move slowly compared to atmospheric currents. So no matter what you want to make of the data showing atmospheric change, the changes in the oceans are more alarming, since oceans require immense stimuli to cause such change.

Systems thinking

Systems thinking involves the use of various techniques to study systems of many kinds. In nature, examples of the objects of systems thinking include ecosystems – in which various elements (such as air, water, movement, plants, and animals) interact. In organizations, systems consist of people, structures, and processes that operate together to make an organization “healthy” or “unhealthy”. Systems Engineering is the discipline that utilizes systems thinking to design, build, operate and maintain complex engineered systems.

SCHOOLS OF THOUGHT

The Circular Economy concept has deep-rooted origins and cannot be traced back to one single date or author. The generic concept has been refined and developed by the following schools of thought:

Regenerative design (representative: John T. Lyle).
Performance economy (representative: Walter Stahel).
Cradle to Cradle (representatives: Michael Braungart and William McDonough)
Blue Economy (representative: Gunter Pauli)
Permaculture (representatives: Bill Millison and David Holmgren)
Biomimicry (representative: Janine Benyus)
Industrial Ecology (this is more than a school of thought, it is an academic discipline that has been taught from the 1990s)

220px-Waste_hierarchy.svg

The evaluation of processes that protect the environment alongside resource and energy consumption to most favourable to least favourable actions.[1] The hierarchy establishes preferred program priorities based on sustainability.[1] To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.[2]

The waste management hierarchy indicates an order of preference for action to reduce and manage waste, and is usually presented diagrammatically in the form of a pyramid.[3] The hierarchy captures the progression of a material or product through successive stages of waste management, and represents the latter part of the life-cycle for each product.[3]

The aim of the waste hierarchy is to extract the maximum practical benefits from products and to generate the minimum amount of waste. The proper application of the waste hierarchy can have several benefits. It can help prevent emissions of greenhouse gases, reduces pollutants, save energy, conserves resources, create jobs and stimulate the development of green technologies.[4]

All products and services have environmental impacts, from the extraction of raw materials for production to manufacture, distribution, use and disposal. Following the waste hierarchy will generally lead to the most resource-efficient and environmentally sound choice but in some cases refining decisions within the hierarchy or departing from it can lead to better environmental outcomes.[5]

Life cycle thinking and assessment can be used to support decision-making in the area of waste management and to identify the best environmental options. It can help policy makers understand the benefits and trade-offs they have to face when making decisions on waste management strategies. Life-cycle assessment provides an approach to ensure that the best outcome for the environment can be identified and put in place.[5] It involves looking at all stages of a product’s life to find where improvements can be made to reduce environmental impacts and improve the use or reuse of resources.[5] A key goal is to avoid actions that shift negative impacts from one stage to another. Life cycle thinking can be applied to the five stages of the waste management hierarchy.

For example, life-cycle analysis has shown that it is often better for the environment to replace an old washing machine, despite the waste generated, than to continue to use an older machine which is less energy-efficient. This is because a washing machine’s greatest environmental impact is during its use phase. Buying an energy-efficient machine and using low- temperature detergent reduce environmental impacts.[5]

The European Union Waste Framework Directive has introduced the concept of life-cycle thinking into waste policies.[5] This duality approach gives a broader view of all environmental aspects and ensures any action has an overall benefit compared to other options. The actions to deal with waste along the hierarchy should be compatible with other environmental initiatives.

478 ppm

Climate Change: Plants Choke on too Much Carbon

Jun 15, 2015 03:12 AM EDT

CO2 is plant food
Earth’s current atmospheric CO2 concentration is almost 390 parts per million (ppm).  Adding another 300 ppm of CO2 to the air has been shown by literally thousands of experiments to greatly increase the growth or biomass production of nearly all plants.  This growth stimulation occurs because CO2 is one of the two raw materials (the other being water) that are required for photosynthesis.  Hence, CO2 is actually the “food” that sustains essentially all plants on the face of the earth, as well as those in the sea.  And the more CO2 they “eat” (absorb from the air or water), the bigger and better they grow. (source: Plants Need CO2)

Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can be later releasedto fuel the organisms’ activities (energy transformation). This chemical energy is stored in carbohydrate molecules, such as sugars, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek φῶς, phōs, “light”, and σύνθεσις,synthesis, “putting together”.[1][2][3] In most cases, oxygen is also released as a waste product. Most plants, most algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis maintains atmospheric oxygen levels and supplies all of the organic compounds and most of the energy necessary for life on Earth.[4]

Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed byproteins called reaction centres that contain green chlorophyll pigments. In plants, these proteins are held inside organelles calledchloroplasts, which are most abundant in leaf cells, while in bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by water splitting is used in the creation of two further compounds that act as an immediate energy storage means: reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), the “energy currency” of cells.

In plants, algae and cyanobacteria, long term energy storage in the form of sugars are produced by a subsequent sequence of light-independent reactions called the Calvin cycle, but some bacteria use different mechanisms, such as the reverse Krebs cycle. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate(RuBP).[5] Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose.

The first photosynthetic organisms probably evolved early in the evolutionary history of life and most likely used reducing agents such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons.[6]Cyanobacteria appeared later; the excess oxygen they produced contributed to the oxygen catastrophe,[7]which rendered the evolution of complex life possible. Today, the average rate of energy capture by photosynthesis globally is approximately 130 terawatts,[8][9][10] which is about three times the current power consumption of human civilization.[11] Photosynthetic organisms also convert around 100–115 thousand million metric tonnes of carbon into biomass per year.[12][13]

Unprecedented Spike in CO2 Levels in 2015

The Last Time CO2 Was This High, Humans Didn’t Exist

What are the implications of observations above 400pm? Water supply, sea level rising, increase of precipitation intensity, food production, heat waves, health threat, biodiversity collapse, etc. IPCC report consist more than 1500 pages of science-based information about causes and implications.

Existing climate changes will go faster and more extreme & unpredictable. We know about a lot of difficult and interconnected issues like ocean acidification or new type of more intensive forest fires (has already taken place in Canada, Russia, Australia) and record existing changes there.

Featured Stories, MIT | Jun 06, 2013

400 ppm CO2? Add Other GHGs, and It’s Equivalent to 478 ppm

 

flickr-4217314587-original

The Keeling Curve record from the NOAA-operated Mauna Loa Observatory shows that the atmospheric carbon dioxide concentration hovers around 400 ppm, a level not seen in more than 3 million years when sea levels were as much as 80 feet higher than today. Virtually every media outlet reported the passage of this climate milestone, but we suspect there’s more to the story. Oceans at MIT’s Genevieve Wanucha interviewed Ron Prinn, Professor of Atmospheric Science in MIT’s Department of Earth, Atmospheric and Planetary Sciences. Prinn is the Director of MIT’s Center for Global Change Science (CGCS) and Co-Director of MIT’s Joint Program on the Science and Policy of Global Change (JPSPGC). Prinn leads the Advanced Global Atmospheric Gases Experiment (AGAGE), an international project that continually measures the rates of change of the air concentrations of 50 trace gases involved in the greenhouse effect. He also works with the Integrated Global System Model, which couples economics, climate physics and chemistry, and land and ocean ecosystems, to estimate uncertainty in climate predictions and analyze proposed climate policies.